SYMBOLS | Symbol | Description | Units | |------------------|---|------------------------| | a | Normal instantaneous acceleration of unit at C.G. | in/sec ² | | A | Maximum vertical acceleration at the center of gravity | in/sec ² | | b | Longitudinal horizontal distance from C.G. to mount (half mount spread) | inches | | В | Maximum vertical acceleration at unit end due to rotation about elastic center (E.C.) | in/sec ² | | c | Distance from elastic center to top of equipment | inches | | CG | Center of gravity | _ | | d | Dynamic deflection | inches | | dyn | Dynamic | _ | | $d_{\mathbf{M}}$ | Dynamic deflection at mount | inches | | d_R | Rotational deflection | radians | | d_{RST} | Static rotational deflection | radians | | d_{ST} | Static deflection | inches | | d_T | Deflection total at end of unit | inches | | D_1 | Maximum vertical deflection at C.G. | inches | | D_2 | Maximum vertical deflection at end of unit due to rotation about elastic center | inches | | E | Eccentricity, or distance between E.C. and C.G. | inches | | E_{C} | Elastic center | _ | | f_n | Natural frequency, translational | H_{Z} | | f_C | Coupled natural frequency | H_{Z} | | G_1 | Maximum vertical acceleration at C.G. | multiples of g | | G_2 | Maximum vertical acceleration due to rotation at end of unit | multiples of g | | G_{O} | Fragility of unit at C.G. | multiples of g | | G_{T} | Total vertical acceleration at end of container | multiples of g | | g | Acceleration of gravity | 386 in/sec^2 | | h | Height of drop | inches | | h_1 | Vertical distance of pivot point above floor | inches | | I_{CG} | Moment of inertia about C.G. | lb-in-sec ² | | I_{P} | Moment of inertia about container pivot point | lb-in-sec ² | | k | Static spring rate (single mount) | lbs/in | | k_{C} | Dynamic compression spring rate (single mount) | lbs/in | | k_S | Dynamic shear spring rate (single mount) | lbs/in | | K_{H} | System dynamic horizontal spring rate | lbs/in | | | | | ## **SYMBOLS** | Symbol | Description | Units | |------------|---|-------------------------| | K_R | System dynamic torsional or rotation spring rate | in-lbs/radian | | K_{T} | System dynamic tension spring rate | lbs/in | | K_V | System dynamic vertical spring rate | lbs/in | | K_{VS} | System static vertical spring rate | lbs/in | | KE | Kinetic energy | in-lbs | | l | Length of container, overall | inches | | 4 | Distance from C.G. to end of unit | inches | | L | Ratio of compression stiffness to shear stiffness | _ | | M | Mass of equipment | lb-sec ² /in | | p | Lateral horizontal distance from C.G. to mount (half mount spread) | inches | | PE | Potential energy | in-lbs | | r | Radius of gyration | inches | | R | Distance from container pivot point to C.G. | inches | | S | Square root of ratio of rotational spring rate to lateral translation spring rate | inches | | St | Static | _ | | t | Time | seconds | | V | Normal linear velocity of C.G. at impact | in/sec | | V_1 | Normal linear velocity of unit end due to rotation about elastic center | in/sec | | W | Weight of suspended mass | lbs | | X | Horizontal distance from container pivot point (p) to unit C.G. | inches | | Y | Vertical distance from container pivot point (p) to unit C.G. | inches | | Z | Length of suspended unit | inches | | α | Angle between the compression axis and horizontal | degrees | | β | Angle between the compression axis and vertical | degrees | | θ_1 | Angle between a line joining C.G. and pivot point (p) and vertical before drop (when $\mathbf{h}_1 = 0$) | degrees | | θ_2 | Angle between a line joining C.G. and pivot point (p) and vertical after drop (when $h_1 = 0$) | degrees | | ω_0 | Angular velocity of C.G. at impact | rad/sec | | ω_1 | Vertical translational circular natural frequency | rad/sec | | ω_2 | Rotational circular natural frequency | rad/sec |